Journal of Catalysis 287 (2012) 114-123

Contents lists available at SciVerse ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Mechanistic study of preferential CO oxidation on a Pt/NaY zeolite catalyst

Jing Xu, Xin-Chao Xu, Like Ouyang, Xue-Jing Yang, Wei Mao, Junjie Su, Yi-Fan Han*

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China

ARTICLE INFO

Article history: Received 18 November 2011 Revised 12 December 2011 Accepted 13 December 2011 Available online 10 January 2012

Keywords: Preferential CO oxidation PROX Kinetics In situ DRIFTS Pt clusters Pt/zeolite XPS TEM

ABSTRACT

Mechanistic study of the preferential CO oxidation was carried out over a Pt(1.0 wt.%)/NaY zeolite catalyst from 300 to 523 K by combination of kinetics and spectroscopy. The mechanism of CO oxidation at 300 K was proposed on the basis of spectroscopic study, and the activity at low temperatures was assumed to originate from small Pt clusters. The analysis of XPS and TEM revealed that metallic state of Pt was rather stable after the reaction. The kinetics suggests a Langmuir–Hinshelwood mechanism in the oxygen-limited low-rate branch (O₂ adsorption/dissociation is strongly depressed by adsorbed CO), being responsible for CO oxidation in H₂-rich gas in the temperature range of 423–523 K. In situ DRIFT spectra show that the Pt surface is dominated by linearly bound CO species, and the presence of H₂ leads to a significant red-shift of the C–O stretch frequency, which indicates a H_{ad}-induced modification of the Pt–CO bond, not just a coverage-dependent frequency shift. Consequently, CO oxidation was significantly enhanced in H₂-rich gas.

© 2011 Elsevier Inc. All rights reserved.

JOURNAL OF CATALYSIS

1. Introduction

The preferential oxidation of CO (PROX) for purifying H_2 gas from steam reforming methanol or other compounds has received increasing attention for the last years [1–6]. It is a crucial reaction for the production of pure H_2 supplying to the proton-exchange membrane (PEM) fuel cell, because the concentration of CO in the hydrogen feed must be kept below 100 ppm for the proper operation of PEMFC [1]. Up to now, supported noble metal catalysts, such Ru, Rh, Pt, Au, and their alloys with a second metal, have been widely studied for PROX of CO [7–13]. Among all catalysts, Ptbased catalysts have found excellent performance for this reaction because of its high durability and selectivity. It has been revealed that this reaction over Pt catalysts follows the Langmuir–Hinshelwood mechanism in the oxygen-limited low-rate branch [14–16]. However, the relationship of the structure–activity–selectivity over supported Pt catalysts is still rare.

Generally, two reactions, $2CO + O_2 \rightarrow CO_2$ and $H_2 + O_2 \rightarrow H_2O$, compete in this reaction system. Till now, most of efforts have been devoted to CO oxidation, but less attention to the effect of H_2 adsorption/oxidation, which also plays an essential role in evaluating the fuel efficiency and the designation of the PROX reactor. As defined in Eq. (1), the lower selectivity (*S*) toward CO₂ means the decrease in the amount of H_2 supplied into fuel cells, being equivalent to the loss of fuel efficiency. For instance, a selectivity of 50%

* Corresponding author. Fax: +86 21 64251928.

E-mail address: yifanhan@ecust.edu.cn (Y.-F. Han).

in the PROX of CO, equal reaction rates of CO and H_2 oxidation, corresponds to a loss of approximately 2.7% in fuel efficiency for typical 2% vol CO in the methanol reformate.

$$S = \frac{\Delta O_2^{(CO)}}{\Delta O_2^{(CO)} + \Delta O_2^{(H_2)}} \times 100\%$$
(1)

A variety of Pt catalysts have been explored for this reaction by loading Pt clusters or nanoparticles on different oxide surfaces, such as CeO₂, TiO₂, MgO, Al₂O₃, and SiO₂ [13–15,17,18]. Interestingly, Pt encaged in porous materials has proven extremely high selectivity for CO oxidation. It was reported that the selectivity could be as high as 90% over a Pt/mordenite catalyst and nearly 100% over a PtFe/mordenite or porous silica catalyst (FSM) [19– 24], in contrast to 45% measured for a Pt/ γ -Al₂O₃ catalyst [14]. More recently, Fukuoka et al. [4,25] found that the promotional effects, in the case of Pt/FSM catalysts, were related with the pore size of mesoporous supports.

NaY zeolite is a type of microporous material, which is abundant of microchannels and cages that allow Pt particles to be highly distributed and stabilized. Mechanistic study of the PROX reaction over Pt/zeolite catalysts, especially CO oxidation on Pt particles less than 5.0 nm, is scarce. Several questions about the mechanism are still not clear, for instance, how does H₂ affect on adsorption/ desorption of CO and CO oxidation in this catalytic system? Therefore, such a work, as an excellent case study, is of paramount importance for both catalyst design and practical application. Pt nanoparticles encaged in zeolite, a Pt (1.0 wt.%)/NaY catalyst, is a good model catalyst for this purpose.

^{0021-9517/\$ -} see front matter \circledast 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2011.12.012

In the following, we will first present kinetic data describing the dependence of the reaction rate (i) on CO partial pressure p_{CO} (0.01–1.5 kPa) at constant oxygen excess $\lambda = 2$ (λ describes the ratio $p_{O_2}: p_{CO}$, with $\lambda = 1$ for stoichiometric conditions, that is, $\lambda = (2p_{0_2} = p_{CO}))$ as well as at constant oxygen partial pressure, (ii) on the \tilde{O}_2 partial pressure (at constant p_{CO} , that is, at varying λ), and (iii) on the reaction temperature (423-523 K). The advantages of this method have been introduced in the previous studies [14-16]. Then, spectroscopic study of the interaction of CO and the surface Pt atoms will be performed under reaction conditions. The distribution of Pt particles larger than 1.0 nm located internal pores of NaY is determined by transmission electron microscopy (TEM); the extremely small Pt particles as encaged clusters, perhaps, less than 1.0 nm, are characterized by technique of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) at different temperatures using CO as probe molecule. The chemical states of Pt over the fresh and spent catalyst are determined by X-rays photon spectroscopy (XPS) in combination with in situ DRIFTS. Finally, in combination with the spectroscopic results and kinetics of CO oxidation, a plausible mechanism will be proposed to elucidate the behavior of PROX of CO on zeolite supported Pt catalysts.

2. Experimental

2.1. Catalyst Preparation

Iron-free faujasite NaY (Si/Al = 2.76) was prepared by hydrothermal crystallization [26]. The exchange of Pt (1.0 wt.%) into the zeolite and the autoreduction of the specimens followed the approaches reported previously [27]. Briefly, Pt was introduced as the tetra-ammine ion complex from 10^{-3} M aqueous solutions of the chloride. The loaded zeolites were washed until chloridefree and dried at 373 K. Both the NaY zeolite and the solution were analyzed by an inductively coupled plasma optical emission spectrometer (ICP, Perkin Elmer). The autoreduction of the specimens was carried out using a temperature program with a ramping rate of 1 K/min in a Ar flow (20 mL/min).

2.2. Kinetic measurements

Kinetic measurements were carried out using a microfix-bed reactor; a quartz tube with an ID of 4 mm was located in a ceramic tube oven and under differential conditions with typically 50-100 mg catalyst powder (catalyst bed length 5–8 mm). Before reaction, the catalyst was conditioned by calcination in a $10\% O_2/N_2$ stream (20 mL/min) at 673 K for 30 min and then reduced at 573 K in H₂ (20 mL/min) for another 30 min. The conversion of CO was kept below 5.0% at $p_{CO} > 0.1$ kPa, and below 10.0% at $p_{CO} < 0.1$ kPa by diluting the catalyst with α -Al₂O₃, which is inert for CO/H₂ oxidation under current conditions. Reactions were carried out at a temperature range 423-523 K in two different atmospheres: a H₂-free gas (0.1-1.5 kPa CO and 0.3-2.0 kPa O₂, rest N₂) and a H₂-rich gas (0.01–1.5 kPa CO and O₂, λ = 2, 75 kPa H₂, rest N₂). Influent and effluent gases were analyzed with an online gas chromatograph (Shimadzu GC-2010) equipped with a CP-carbon-BOND column. Each data point was taken at an interval of 2 h. High-purity reaction gases (CO 4.7, O₂ 5.0, H₂ 5.0, N₂ 6.0) were used. Evaluation of the Weisz criterion showed the absence of mass transport-related problems [28]. The catalyst is rather stable, CO conversion was gradually decreased by about 15% after running for 1000 min at 523 K (1.0 kPa CO/O₂, λ = 2, 75 kPa H₂, rest N₂). The effects of products (H₂O and CO₂), the maximum concentration of H_2O (0.075%), and CO_2 (0.15%) imposed no effect on the reaction rate.

Absolute reaction rate of CO (r_{CO}) and H₂ (r_{H_2}) oxidation in the simulated reformate is expressed as Eqs. (2) and (3), respectively. In the ideal reformate, r_{H_2} is calculated for the average concentration of oxygen, \dot{c}_{O_2} , at the inlet and outlet of the reactor (Eq. (4)):

$$r_{\rm CO} = \frac{\dot{c}_{\rm CO,in} \cdot X_{\rm CO} \cdot \dot{V}_{\rm gas}}{m_{\rm Me}} \quad [\text{mol s}^{-1} \ g_{\rm Me}^{-1}]$$
(2)

$$r_{\rm H_2} = r_{\rm CO} \left(\frac{1}{5} - 1 \right)$$
 (3)

$$r_{O_2} = \frac{\dot{c}_{O_2,\text{in}} \cdot X_{O_2} \cdot \dot{V}_{\text{gas}}}{m_{\text{Me}}} \quad [\text{mol s}^{-1} \ g_{\text{Me}}^{-1}]$$
(4)

 m_{Me} is the mass of Pt in the reactor bed, \dot{V}_{gas} is total molar flow rate, X_{CO} is CO conversion based on CO₂ formation in the simulated reformate, X_{O_2} is O₂ conversion, *S* is selectivity for CO oxidation, and $\dot{c}_{\text{CO}}, \dot{c}_{\text{O}_2}$ is the concentration of CO, O₂ in gas mixture, equal to p_i/p_0 , p_i : partial pressure of reactants, p_0 : total pressure in the system.

Consequently, the selectivity in H₂-rich gas can then be calculated as:

$$S = \frac{0.5 \times c_{CO_2}^{out}}{c_{O_2}^{in} - c_{O_2}^{out}} = \frac{0.5 \times c_{CO_2}^{out}}{\Delta c_{O_2}}$$
(5)

2.3. DRIFTS

All DRIFTS of CO adsorption were performed in an in situ reaction cell (modified Harricks model HV-DR2) in order to allow gas flowing continuously through the catalyst bed (ca. 0.1 g) during spectra acquisition. The spectra were recorded on a PerkinElmer FT-IR spectrum 100 (resolution: 4 cm⁻¹) spectrometer connected a GC-QMS (HPR-20, Hiden Analytical Ltd.), equipped with an MCT narrowband detector, by co-adding 300 single-beam spectra, equivalent to an acquisition time of ~5 min. All infrared data were evaluated in Kubelka-Munk units, which were linearly related to the absorber concentration in DRIFTS. Spectral contributions from gaseous CO were eliminated by subtracting the corresponding spectra from the pure support material. For CO adsorption at room temperature. typically, 100 single-beam spectra at a nominal resolution of 8 cm^{-1} were added for one spectrum, equivalent to an acquisition time of \sim 30 s. Prior to every measurement, all samples were in situ conditioned using the same procedure as given in the kinetic measurements.

2.4. XPS

X-ray photoelectron spectra were collected with a VG ESCALAB 250 spectrometer, using Al Kα radiation (1486.6 eV, pass energy 20.0 eV) at a base pressure of 1×10^{-9} Torr. The background contribution (obtained by the Shirley method) arising from inelastic processes was subtracted, while curve-fitting employed a Gaussian-Lorentzian profile. The binding energies (BEs) were calibrated internally against Si 2p (103.5 eV) and C 1s (285.0 eV) peaks and externally with a Au wire (Au 4f at 84.0 eV). The reduced catalysts were protected by ultra high-purity N2 when cooling down to room temperature. To eliminate systematic errors, the reference materials were cleaned by Ar ion etching for 5 min at 3.0 uA. The uncertainty of XPS results caused by air will be minimized by comparing the reference spectra of fresh reduced sample. Note that due to the overlap of the Pt 4f and Al 2p level in the range of 70–75 eV, the separation of Al 2p peak in the Pt 4f region was referred to the Al 2p = 73.9 eV in the Pt-free NaY zeolite; the deconvolution of the Pt 4f level was referred to a core level energy of metallic Pt^0 4f 7/2 at 70.1 eV.

2.5. TEM

Microstructure and morphology of the catalyst were determined by TEM, which was performed on a 200-keV microscope (Philips CU-20-ST). The catalyst was suspended in ethanol, and one drop of this slurry was deposited on a carbon-coated copper grid. The liquid phase was evaporated before the grid was loaded into the microscope.

3. Results

3.1. Kinetic measurements

3.1.1. Partial pressure dependence – reaction orders

Before the kinetic measurements, it was verified that contributions from side reactions, such as CO and CO_2 methanation or the forward and reverse gas-shift reaction, were negligible for the current reaction parameters. CO_x methanation was measured only at 573 K, yielding less than 0.1% CH₄; while the rates for the water gas-shift reaction were lower than those of CO oxidation by 2–3 magnitudes.

3.1.1.1. H_2 -rich gas. The dependence of the CO oxidation rate on p_{CO} was investigated in the partial pressure range 0.01–1.5 kPa at 423, 473, and 523 K, respectively, at a constant O₂ excess of λ = 2 (Fig. 1a and b). The reaction rates decay continuously with decreasing p_{CO} . The logarithmic reaction rates are proportional to the logarithmic p_{CO} over the entire pressure range investigated (Fig. 1a). Assuming a simple power law description of the reaction rate, r_{CO} , with

$$\ln(r_{\rm CO}) = \ln(k_{\rm CO}) - \frac{Ea}{R \cdot T} + \boldsymbol{\alpha}_{\rm CO} \cdot \ln(p_{\rm CO}) + \boldsymbol{\alpha}_{\rm O_2} \cdot \ln(p_{\rm O_2}), \tag{6}$$

this indicates a constant reaction order. For constant λ , as in the present case, the slope of the resulting lines yields the overall reaction order α_{CO}^{λ} , which in this description is related to the reaction orders for CO and O₂, α_{CO} , and α_{O_2} , respectively, by $\alpha_{CO}^{\lambda} = \alpha_{CO} + \alpha_{O_2}$. The α_{CO}^{λ} derived from those experiments are 0.28, 0.51, and 0.56 for 423, 473, and 523 K, respectively (Table 1). At $p_{CO} = 1.0$ kPa, r_{CO} increased by a factor of 100 from 423 to 523 K.

A similar increase in $r_{\rm CO}$ was observed with an increase in p_{O_2} (Fig. 1c). With keeping $p_{\rm CO}$ = 1.0 kPa, and the reaction orders, α_{O_2} = 0.74, 0.64, and 0.56 for 423, 473, and 523 K, respectively, were obtained from those slopes, whereas corresponding $\alpha_{\rm CO}$ at -0.46, -0.13, and ~ 0 were derived as well (Table 1). These kinetic characteristics, negative reaction orders with respect to CO and positive to O₂, are consistent with the Langmuir–Hinshelwood reaction mechanism in the low-rate branch. At 523 K, however, CO oxidation is no longer an oxygen-limited, but a transition from an oxygen-limited low-rate branch to a CO-limited high-rate branch.

The selectivities for CO oxidation exhibited as a function of p_{CO} and p_{O_2} (Fig. 1b and d), respectively. At 423 K, the selectivity of ca. 50% was almost independent of p_{CO} . At 473 K, it increased from 20% at 0.01 kPa to 60% at 1.5 kPa, and the pressure dependence of the selectivity was even more pronounced at 523 K, ranging from 10% at 0.01 kPa to 60% at 1.5 kPa CO. About 30–50% increase in selectivity was also observed with an increase in p_{O_2} (Fig. 1d); especially, a selectivity of ca. 80% was obtained at $p_{O_2} = 2.5$ kPa ($\lambda = 5$). Interestingly, the change in selectivity with varying p_{O_2} is dependent of CO oxidation rates; H₂ oxidation rates (open symbols in Fig. 1c) are almost constant.

3.1.1.2. H_2 -free gas. A rather similar behavior of CO oxidation was also observed in H_2 -free gas (Fig. 2). The absolute values of α_{CO} and α_{0_2} are slightly higher than those for H_2 -rich gas, with $\alpha_{CO} = -0.65/\alpha_{0_2} = 1.07$ at 423 K and $\alpha_{CO} = -0.78/\alpha_{0_2} = 1.22$ at 523 K. Meanwhile, under current conditions, the CO oxidation reaction rates in H_2 -free gas are generally lower than that in H_2 -rich gas by a factor of 2–4. Clearly, CO oxidation was remarkably improved in the presence of H_2 .

3.1.2. Temperature dependence – activation energies

Temperature-dependent rates at $p_{CO} = 0.01$, 0.2, and 1.0 kPa were plotted in an Arrhenius diagram (Fig. 3). For reaction in H₂-rich gas, these data can approximately be described by two linear regions, with slopes resulting in an $E_a = 54.0 \pm 4.0$ kJ/mol below 473 K and an $E_a = 90.0 \pm 5.0$ kJ/mol above 473 K. In contrast, for reaction in H₂-free gas, at $p_{CO} = 1.0$ kPa, a linear relationship

Fig. 1. Dependence of the CO oxidation rate r_{CO} (a) and selectivity *S* (b) on the CO partial pressure in idealized reformate gas (CO: 0.01–1.5 kPa, $\lambda = 2$, H₂: 75 kPa, balance N₂). Catalyst dilution: 1:400/20/5 with α -Al₂O₃ for 423 (\blacklozenge), 473 (\blacklozenge), and 523 K (\blacksquare), respectively. Flow rate: 120/60 mL/min. Dependence of the CO oxidation rate r_{CO} (c) and the selectivity *S* (d) on the O₂ partial pressure in idealized reformate gas (CO: 1 kPa, $\lambda = 0.4-5$, H₂: 75 kPa, balance N₂). Catalyst dilution: 1:5–1:400 with α -Al₂O₃. Flow rate: 60 mL/min in the range of 423–523 K. The dashed line and hollow symbols in (c) represent the corresponding H₂ oxidation rate at the respective reaction parameters.

J. Xu et al./Journal of Catalysis 287 (2012) 114–123

Ta	bl	e	1

Apparent activation energies, reaction orders with respect to p_{CO} , α_{CO} , and p_{O_2} , α_{O_2} , for CO oxidation on supported Pt catalysts at atmospheric pressure.

System	Reaction conditions	T-range (K)	E _a (kJ/mol)	α_{O_2}	α _{co}	Ref.
Pt/γ - Al_2O_3	0.05–1 kPa CO, λ = 2, 75 kPa H ₂ , rest N ₂	423-523	72-76	+0.8	-0.4	[14]
$Pt/\gamma - Al_2O_3$	1.0 kPa CO, <i>λ</i> = 1	<473	55	+1	-1.5	[29]
$Pt/\gamma - Al_2O_3$	1.0 kPa CO, λ = 1, 2.5 kPa H ₂ O	<473	45	+1	-0.7	[29]
$Pt/\gamma - Al_2O_3$	3.0 kPa CO, <i>λ</i> = 1	373-493	67-71	+0.7	-0.1	[30]
Pt/SiO ₂	1.3 kPa CO, λ = 1	<423-473	56-80	+0.9	-0.2	[31]
Pt/SiO ₂	2.0 kPa CO, $\lambda = 0.8$	353	72-78	+1	<0	[31]
Pt/NaY Zeolite	0.1–1.5 kPa CO, λ = 2, rest N ₂	423-473	80.5-84.5	+1.07 to 0.6	5 (423 K)	This work
				+1.22 to 0.7	8 (523 K)	
Pt/NaY Zeolite	0.01–1.5 kPa CO, λ = 2, 75 kPa H ₂ , rest N ₂	423-473	50-58	+0.74 to 0.4	6 (423 K)	This work
		473-523	85-95	+0.64 to 0.1	3 (473 K)	
				+0.56 to 0 (523 K)	

Fig. 2. Dependence of the CO oxidation rate r_{CO} on the CO partial pressure in a H₂-free gas mixture (CO: 0.1–1.5 kPa, $\lambda = 2$, balance N₂, dashed lines) at 423 K (\bullet), 473 K (\blacksquare), and 523 K (\blacktriangle) and on the O₂ partial pressure in the H₂-free gas mixture (CO: 1 kPa, O₂: 0.3–2.0 kPa, rest N₂, solid lines) at 423 K (\bigcirc) and 523 K (\triangle). Catalyst dilution: 1:400/200 with α -Al₂O₃ for 523 and 423 K, respectively. Flow rate: 120/ 60 mL/min.

between the logarithmic oxidation rates and 1/T was obtained for the entire temperature range, yielding an $E_a = 82.5 \pm 2.0$ kJ/mol.

3.2. Characterization

.1

3.2.1. TEM

Reaction ratee10⁵ [moles⁻¹·g_{Pt}-⁻¹]

Pt nanoparticles with a diameter range 2–4 nm are predominant for the fresh (Fig. 4A) and spent (Fig. 4B) catalyst, the size of most Pt particles was smaller than 4.0 nm (Fig. 4B), and the mean size (average diameter, \bar{d}_{Pt}) after conditioning is about 3.4 ± 0.2 nm, corresponding to a dispersion of 33.7%. The particle size was almost unchanged after reaction. In addition, extremely small Pt particles encaged in zeolite cannot be resolved by TEM, the actual particle size is expected to be smaller than 1.0 nm.

3.2.2. XPS analysis

The XPS Pt 4f spectra (Fig. 5) obtained for different samples (unreacted and reacted) were recorded. On the basis of the ratio of Pt $4f_{7/2}/Pt 4f_{5/2} = 4/3$ [32,33] and 3.3 eV of the spin–orbit coupling between two peaks [34], the Pt $4f_{7/2}$ spectra could be deconvoluted into two peaks at 70.1 and 71.0 eV, corresponding to metallic Pt⁰ and oxide Pt²⁺, respectively. The ratio of Pt⁰/Pt²⁺ peak area (Table 2) revealed that metallic Pt⁰ was predominant on the

Fig. 3. Arrhenius diagram of ln(r_{CO}) vs. 1/*T* for CO oxidation in H₂-rich and H₂-free gas mixtures in the temperature range of 423–523 K. H₂-rich atmosphere: $p_{CO} = 0.01$ (♥), 0.2 (■) and 1.0 kPa (▲), $\lambda = 2,75$ kPa H₂, rest N₂; H₂-free atmosphere: $p_{CO} = 1.0$ kPa (\bigcirc), rest N₂. Catalyst dilution: 1:5–1:400 with α -Al₂O₃, flow rate: 60–120 mL/min.

surface of the fresh catalyst; a trace amount of Pt atoms might be oxidized in the reaction as identified with the reacted catalyst. In addition, oxidative Pt has also been evidenced previously to exist inherently over the Pt/NaY zeolite catalyst even after reduction [35]. These isolated Pt^{2+}/Pt^{4+} was assumed to locate in sodalite cages and hexagonal prisms of the zeolite (Supporting information, Table S1).

3.2.3. In situ DRIFT spectra of CO adsorption/oxidation

3.2.3.1. CO adsorption/oxidation at 300 K. Time-dependant spectroscopy of CO adsorption was first recorded at 300 K in CO $(1.5\%)/N_2$. With referring the previous studies for different Pt-based catalysts (Table 3), the bands (v_{CO}) in the region of 2000–2200 cm⁻¹ are assigned to CO linearly bound to Pt⁰ or Pt^{δ+}; the ones in the region of 1700–2000 cm⁻¹ are attributed to the bridge CO band. Four linear bands at 2160, 2067, 2034, and 2006 cm⁻¹ were clearly detected (Fig. 6). The v_{CO} at 2067 cm⁻¹ can be attributed to CO bound to Pt particles larger than 1.2 nm, while the v_{CO} at 2034 and 2006 cm⁻¹ may result from CO bound to Pt clusters less than 1.2 nm [44]. A weak band at 2160 cm⁻¹, assigned to Pt²⁺—CO, suggests the existence of Pt²⁺ even after pretreatment. In addition, a broad bridge band centered at 1825 cm⁻¹ was also clearly observed, but its intensity is almost independence of the time.

Fig. 4. TEM images for (A) fresh reduced (as conditioned) and (B) reacted (running for 1000 min in a mixture of 1 kPa CO, λ = 2, 75 kPa H₂, rest N₂ at 523 K) catalyst; Size distribution of (C) fresh reduced and (D) reacted Pt particles.

The time-dependent spectra (Fig. 7) for CO oxidation (CO= O_2) $(1.5\%)/N_2$) at 300 K exhibited a maximum at 2060 cm⁻¹ at 30 s, eventually shifted up to 2080 cm^{-1} at 750 s, while its intensity increased concurrently. The blue-shift of this band can be attributed to the co-adsorption of CO_{ad} and O_{ad} on the surface Pt, by which the electron (e) density of Pt particles is reduced by transferring electron to O_{ad}. In the same time, the intensity of the weak linear band at 2170 cm⁻¹, assigned to CO-Pt²⁺ species, increased steadily. The bridge band at 1827 cm⁻¹ was observed, but its intensity was largely reduced comparing with the correspondent spectra in O₂-free gas (Fig. 6). Of interesting, a new peak appeared at 2357 cm^{-1} during reaction. Mantell et al. [45] suggested that the band at 2353 cm⁻ should be attributed to a CO₂ molecule standing nearly vertical and slightly bent on Pt surface as the product from CO oxidation. The formation of this single band will be further discussed. It is noted that a similar CO_{2ad} peak was observed in H₂-rich gas under the same reaction conditions.

3.2.3.2. CO adsorption/oxidation in the temperature range 423– 523 K. For CO adsorption at 423 K (Fig. 8a), the spectra were slightly changed comparing to that from 300 K. Several characteristic v_{CO} bands at 2201, 2093, 2077, and 2001 cm⁻¹ were observed in a stream of CO (1.5%)/N₂. The v_{CO} at 2201 cm⁻¹ can be assigned to CO adsorbed on Pt²⁺ [42–44]. A shoulder at 2093 cm⁻¹ is likely to result from CO bound to Pt clusters connecting to the oxygen on the wall of zeolite cages ((O)Pt_n—CO). The v_{CO} at 2077 cm⁻¹ is attributed to CO adsorbed on Pt particles outside zeolite cages [44,46–54]. Finally, the small shoulder at 2001 cm⁻¹ is tentatively attributed CO bonded to small Pt clusters inside the cages [44,46– 47]. Decreasing p_{CO} from 1.5 to 0.04 kPa, a red-shift of $\Delta v = -16$ cm⁻¹ for the main peak at 2077 cm⁻¹, which is owing to the fade of adsorbate–adsorbate interactions and dynamic dipole–dipole coupling effects.

For CO adsorption in H₂-rich gas (Fig. 8b), the general characteristics of CO bands are rather similar to those in H₂-free gas, with the following modifications: (i) The v_{CO} at 2201 cm⁻¹ (Pt²⁺-CO) disappeared completely, (ii) the v_{CO} at 2077 cm⁻¹ (H₂-free) was shifted down to 2054 cm⁻¹ (H₂-rich), and iii) the bridge CO was shifted from 1813 cm⁻¹ (H₂-free) to 1789 cm⁻¹ (H₂-rich). The red-shift of the main peak because of the change in p_{CO} became significantly weaker upon addition of H₂, with $-\Delta 16$ cm⁻¹ in H₂-free gas and $-\Delta 5$ cm⁻¹ in H₂-rich gas. Hence, the shift of the C–O stretch frequency results not only from a H_{ad}-induced lowering of the CO_{ad} coverage, but also from a modification of the Pt–CO bond due to the interaction with co-adsorbed H_{ad} species. For CO adsorption at 523 K (Fig. 9a and b), the spectra were rather similar

Fig. 5. Pt_{4f} XPS spectra for (A) fresh reduced (as conditioned) and (B) reacted (running for 1000 min in a mixture of 1 kPa CO, $\lambda = 2$, 75 kPa H₂, rest N₂ at 523 K, flow rate: 120 N ml/min) catalyst; (C) oxidized catalyst (in O₂ (10%)/N₂ mixture at 673 K, 1 h) and (D) NaY zeolite.

to that obtained upon adsorption at 423 K. The only difference is that the band at 1985 cm^{-1} appeared in H₂-rich gas (Fig. 9b).

Furthermore, CO_{ad} coverage, θ_{CO} , from the integrated intensities of the linear CO band in Figs. 8 and 9 was evaluated. All coverages were normalized to the saturation one ($\theta_{CO} = 1.0$) at 423 K in H₂free gas with $p_{CO} = 1.5$ kPa, which is about 0.7 monolayers (ML) [15]. In H₂-free gas, decreasing p_{CO} from 1.5 to 0.04 kPa, the correspondent θ_{CO} decreased to 0.75 at 423 K and 0.6 at 523 K (Fig. 10); the trends in H₂-rich gas were similar, but the CO_{ad} coverages were significantly reduced, with $\theta_{CO} = 0.58$ at 423 K and $\theta_{CO} = 0.73$ at 523 K for $p_{CO} = 1.5$ kPa, which decay to $\theta_{CO} = 0.44$ and $\theta_{CO} = 0.38$ for $p_{CO} = 0.04$ kPa. This fact demonstrated that the θ_{CO} was affected by the factors such as temperature, H₂, and concentration of CO. The vibrational frequencies for the linear CO bands were found to shift up with the increasing of p_{CO} (Fig. 10), and it is generally attributed to a strengthening of the dipole–dipole coupling effect and static adsorbate–adsorbate interactions with an increase in θ_{CO} . We argue that hydrogen adsorption not only leads to a change of CO_{ad} coverage, but also a weakening of the Pt–CO interaction.

4. Discussion

CO oxidation over Pt clusters or model Pt catalysts has been studied for decades because it is an excellent model reaction for both fundamental study and practical application [54–57]. The evolution of the reactivities with the cluster size is correlated with the position of the atomic d-states with respect to the O₂ antibonding π_g^* state; however, the implement of the same reaction in the presence of H₂, especially, at low temperatures, over Pt clusters loaded on zeolite has rarely been reported so far.

TEM images (Fig. 4) showed that the average size of Pt was about 3.4 nm and quite stable during reaction. It is well known that zeolite frameworks have a great deal of exchangeable cations, some exchanged Pt atoms could form extremely small clusters (<1.0 nm), which were located in the channels and cages of zeolite [58]. It was reported that a small Pt cluster consisting of null atoms (an edge length of about 0.55 nm) existed in the cage by bonding to the wall of zeolite LTL [51]. The Pt particles smaller than 1.0 nm are unlikely to be visualized by TEM because of its resolution limits. In principle, faujasites (zeolites X and Y) have a three-dimensional pore structure incorporating nearly spherical cages with a diameter of 1.2 nm. Naturally, the diameter for the Pt clusters at the cage of Y zeolite is estimated of no more than 1.2 nm. Up to now, the determination of Pt clusters less than 1.0 nm loaded on zeolites is still a challenge, even though a variety of techniques, such as EX-AFS, IR, HRTEM, and chemisorption [50,58-60], have been utilized. In particular, the DRIFTS of CO adsorption may provide valuable information for this aim.

The DRIFT spectra at 300 K (Fig. 6) showed the double low-frequency v_{CO} bands at 2034 and 2006 cm⁻¹. The former can be assigned to CO bound to Pt clusters with lower coordination number (<5), which leads to more back donation of Pt electrons to CO 2 π^* orbital and the creation of low-frequency linear CO bands [44,50]. In particular, the band at 2006 cm⁻¹ indicates that the coordination number of Pt clusters is close to 3 or less [50], a single Pt atom or a cluster compositing of less than 5 of Pt atoms [60]. More recently, CO-IRAS spectra of Pt nanoparticles of varied size from 4.0 to 2.5 nm on SiO₂ demonstrated a red-shift by almost Δ 20 cm⁻¹, while the percentage of terrace sites decreased by 50% [61].

Subsequently, a unique band at 2357 cm^{-1} (Fig. 7) was observed in the mixture of CO and O₂ ($p_{CO} = p_{O_2} = 1.5 \text{ kPa}$), while the low-frequency bands at 2034 and 2006 cm⁻¹ (Fig. 6)

Table 2						
Pt4f XPS	spectra:	peak	positions,	areas,	and	widths.

Sample ^a	nple ^a Pt 4f _{7/2}		Pt 4f _{5/2}			Pt ⁰ (70.1 eV)/Pt ²⁺ (71.0 eV)	
	BE (eV)	Area	FWHM (eV) ^c	BE (eV)	Area	FWHM (eV)	(area ratio)
Reduced	70.1	424	1.27	73.4	318	1.27	5.5
	71.0	77	1.0	74.3	58	1.0	
CO adsorbed ^a	70.1	520	1.27	73.4	390	1.27	4.8
	71.0	107	1.0	74.3	80	1.0	
CO + O ₂ adsorbed ^b	70.1	518	1.27	73.4	384	1.27	4.8
	71.0	108	1.0	74.3	81	1.0	

^a Adsorption of CO (1.5%) in N₂ over fresh reduced catalyst for 1 h at room temperature.

 $^{\rm b}$ In the stream of CO (1.5%) + O₂ (1.5%), rest N₂ over fresh reduced catalyst for 1 h at 300 K.

^c Full-width at half maximum (FWHM) in eV.

Table 3

Proposed assignments of the CO_{ad} bands on supported and single-crystal Pt catalysts.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Species	Frequencies (cm ⁻¹)	Support/Pt Single crystal	Comments	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ⁰ –CO	2070-2076	Pt(111)(110)	UHV	[36]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ⁰ —CO	2095	Pt(111)	UHV	[37]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ⁰ —CO	2081 (face), 2070 (corner), 2063 (edge)	SiO_2 (d_{Pt} : 1.1–10.5 nm)	System pressure: 1×10^{-7} Torr	[38]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ⁰ —CO	2100	Al ₂ O ₃	300–460 K	[39]
Pt ⁰ -C0 2083 Al ₂ O ₃ Pt crystal faces 423-523 K [40] 423-523 K Pt ⁰ -C0 2060 Al ₂ O ₃ Pt unextend crystal faces [40] O-Pt-C0 2120 Al ₂ O ₃ Pt unextend crystal faces [40] Pt ^a -C0 2120 Al ₂ O ₃ O ₂ + CO, 298 K [41] Pt ^a -CO 2120 NaY zeolite 353 K [42] Pt ^a -CO 2026 NaY zeolite 353 K [42] Pt ⁰ -CO 2026 NaY zeolite 300 K [43] Pt ⁰ -CO 2025-2090 (HF) NaX Zeolite 300 K [43] Pt ⁰ -CO 2025-2090 (HF) NaX Zeolite 298 K [46] Pt ⁰ -CO 1970 NaX Zeolite 298 K [46] Pt ⁰ -CO 100-2120 NaY Zeolite 298 K [47] [Pt ^a (CO) ₆] ¹ a ⁻ , n = 3, 4 2040 (linear) Colloidal Pt 298 K [47] [Pt ^a -CO 2035, 2100 NaY Zeolite 298 K [47] [Pt ^a (CO) ₆] ¹ a ⁻ , n = 3, 4 10	$(Pt^0)_2CO$	1840	Al_2O_3	300-460 K	[39]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt ⁰ —CO	2083	Al_2O_3	Pt crystal faces	[40]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				423–523 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ⁰ —CO	2060	Al_2O_3	Pt unextend crystal faces	[40]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O—Pt—CO	2120	Al_2O_3	O ₂ + CO, 298 K	[41]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt ²⁺ —CO	2110	NaY zeolite	p _{co} : 72–76 kPa	[42]
$\begin{array}{ccccc} Pt_{3}(CO)_{3}(\mu_{2}-CO)_{3} & 1896, 1841 & NaY zeolite & 353 K & [42] \\ Pt_{9} \mbox{or Pt}_{12}-CO & 2026 & NaY zeolite & 353 K & [42] \\ Pt^{0}-CO & 2078 & H2SM-5-zeolite & 300 K & [43] \\ Pt^{0}-CO & 2025-2090 (HF) & NaX Zeolite & HF: d_{Pt} > 1.2 \mbox{ nm} & [44] \\ 2000-2025 (LF) & & & & & & & & & & & & & & & & & & &$				353 K	
$\begin{array}{ccccccc} Pt_{9} \mbox{ or } Pt_{12}\mbox{-}CO & 2026 & NaY zeolite & 353 \ K & [42] \\ Pt^{0}\mbox{-}CO & 2078 & HZSM-5 zeolite & 300 \ K & [43] \\ Pt^{0}\mbox{-}CO & 2025\ (JF) & LF: d_{Pt} > 1.2\ nm & 298 \ K & [46] \\ 2000\mbox{-}2025\ (JF) & LF: d_{Pt} < 1.2\ nm & 298 \ K & [46] \\ Pt(0\mbox{-}zoblite)_2(CO)_2 & 2035\ , 2100 & NaX Zeolite & 298 \ K & [46] \\ Pt^{6^*}\mbox{-}CO & 2100\mbox{-}2100 & NaY Zeolite & 298 \ K & [46] \\ Pt^{6^*}\mbox{-}CO & 2100\mbox{-}2100 & NaY Zeolite & 298 \ K & [46] \\ Pt^{6^*}\mbox{-}CO & 2100\mbox{-}2120 & NaY Zeolite & 298 \ K & [47] \\ [Pt_3(CO)_6]_n^{2^-}, n = 3, 4 & 2040\ (linear) & Colloidal \ Pt & 298 \ K & [48] \\ 1840\ (bridge) & I100\mbox{-}2120\ (linear) & Pt\ carbonyl & I100\mbox{-}2120\ (linear) & I100\mbox{-}2126\ (Pt)_0^5\mbox{-}CO\ & 2034\ & K\mbox{-}2066\ (linear), 2000\ (linear), 2000\ (linear), 2000\ (linear) & K\mbox{-}208\ K & [50]\ (Pt)_0^5\mbox{-}CO\ & 2060\ (linear), 2000\ (linear), 2000\ (linear) & K\mbox{-}208\ K & [51]\ Pt^{6}\mbox{-}CO\ & 2060\ (linear), 2000\ (linear) & K\mbox{-}208\ K & [51]\ Pt^{6}\mbox{-}CO\ & 2066\ (linear), 2000\ (linear) & K\mbox{-}208\ K & [51]\ Pt^{6}\ & C0\ & 208\ K & [51]\ Pt^{6}\ & C0\ & 208\ K & [51]\ Pt^{6}\ & C0\ & 208\ K & [52]\ Pt^{6}\ & C0\ & 2008\ & 198\ & 198\ & 198\ & 151\ & 110\ & 100\ & $	$Pt_3(CO)_3(\mu_2-CO)_3$	1896, 1841	NaY zeolite	353 K	[42]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pt_9 \text{ or } Pt_{12}$ —CO	2026	NaY zeolite	353 K	[42]
Pt ⁰ -CO 2025-2090 (HF) NaX Zeolite HF: $d_{Pt} > 1.2 \text{ nm}$ [44] $2000-2025$ (LF) LF: $d_{Pt} < 1.2 \text{ nm}$ [46] Pt ⁵ CO 1970 NaX Zeolite 298 K [46] Pt ⁶ CO 2035, 2100 NaX Zeolite 298 K [46] Pt ⁵ CO 2100-2120 NaY Zeolite 298 K [47] [Pt ₃ (CO) ₆] ²⁻ , n = 3, 4 2040 (linear) Colloidal Pt 298 K [48] 1840 (bridge) 1200-2120 (linear) Pt carbonyl [49] [49] Pt ⁵⁺ -CO 2100-2120 (linear) Pt carbonyl [49] [49] [Pt ₃ (CO) ₆] ²⁻ , n = -10, 6, 5, 4, 3, 2, 1) 2100-2120 (linear) [49] [40] [Pt ⁶⁺ -CO 2063 K-L zeolite 298 K [50] [Pt ⁶⁺ -CO 2063 K-L zeolite 298 K [50] [Pt ⁶⁺ -CO, (Pt ⁰) ₂ CO 2060 (linear), 2000, 1810-1840 (bridge) K-L zeolite 298 K [51] Pt ⁶⁻ -CO 2075-2090 (on large Pt particle) K-L zeolite 298 K [51] Pt ⁶⁻ -CO 2006, 2051, 2031 200 K [52] <td< td=""><td>Pt⁰—CO</td><td>2078</td><td>HZSM-5 zeolite</td><td>300 K</td><td>[43]</td></td<>	Pt ⁰ —CO	2078	HZSM-5 zeolite	300 K	[43]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt ⁰ —CO	2025-2090 (HF)	NaX Zeolite	HF: $d_{Pt} > 1.2 \text{ nm}$	[44]
$\begin{array}{cccccc} Pt^{\deltaCO} & 1970 & NaX Zeolite & 298 K & [46] \\ Pt(0_{zeolite})_2(CO)_2 & 2035, 2100 & NaX Zeolite & 298 K & [46] \\ Pt^{\delta+-CO} & 2100-2120 & NaY Zeolite & 298 K & [47] \\ [Pt_3(CO)_6]_n^{2-}, n = 3, 4 & 2040 (linear) & Colloidal Pt & 298 K & [47] \\ 1840 (bridge) & & & & & & & & & & & & & & & & & & &$		2000–2025 (LF)		LF: <i>d</i> _{Pt} < 1.2 nm 298 K	
$\begin{array}{cccc} Pt(0_{zeolite})_2(CO)_2 & 2035, 2100 & NaX Zeolite & 298 K & [46] \\ Pt^{b^+}-CO & 2100-2120 & NaY Zeolite & 298 K & [47] \\ [Pt_3(CO)_6]_n^{2^-}, n = 3, 4 & 2040 (linear) & Colloidal Pt & 298 K & [47] \\ 1840 (bridge) & Pt carbonyl & [49] \\ [Pt_3(CO)_6]_n^{2^-} (n = \sim 10, 6, 5, 4, 3, 2, 1) & 2100-2120 (linear) & Pt carbonyl & [49] \\ 1700-1740 (bridge) & & & & & & & & \\ Pt^{b^+}-CO & 2126 & K-L zeolite & 298 K & [50] \\ [Pt]_7 - CO & 2063 & K-L zeolite & 298 K & [50] \\ [Pt]_9^{-} - CO & 2034 & K-L zeolite & 298 K & [50] \\ Pt_{9}^{b^-}-CO & 2060 (linear), 2000, 1810-1840 (bridge) & K-L zeolite & 298 K & [50] \\ Pt_{9}^{b^+}-CO & 20060 (linear), 2000, 1810-1840 (bridge) & K-L zeolite & 298 K & [51] \\ Pt^{b^+}-CO & 2075-2090 (on large Pt particle) & K-L zeolite & 298 K & [51] \\ Pt^{0}-CO & 2075-2090 (on large Pt particle) & K-L zeolite & 298 K & [51] \\ Pt^{0}-CO & 1958-1976 & NaX zeolite & 300 K & [52] \\ Pt_{9}^{b}-CO & 2000 & Pt_{e} cluster/MgO (110) & 90 K UHV & [53] \\ Pt_{9}^{b}-CO & 2000 & Pt_{e} cluster/MgO (110) & 90 K UHV & [54] \\ Pt_{9}^{b}-CO & 2000 & Pt_{9}^{b}-CO & Pt_{9}^$	$Pt^{\delta-}-CO$	1970	NaX Zeolite	298 K	[46]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pt(O_{zeolite})_2(CO)_2$	2035, 2100	NaX Zeolite	298 K	[46]
$ \begin{bmatrix} Pt_3(CO)_6 \end{bmatrix}_n^{2-}, n = 3,4 & 2040 \text{ (linear)} & Rel & 208 \text{ K} & [48] \\ 1840 \text{ (bridge)} & Pt \text{ carbonyl} & [49] \\ 1700-1740 \text{ (bridge)} & Pt \text{ carbonyl} & [49] \\ 1700-1740 \text{ (bridge)} & Pt \text{ carbonyl} & [49] \\ Pt^{6^*}-CO & 2126 & K-L \text{ zeolite} & 298 \text{ K} & [50] \\ (Pt)_7^0 - CO & 2063 & K-L \text{ zeolite} & 298 \text{ K} & [50] \\ (Pt)_5^0 - CO & 2034 & K-L \text{ zeolite} & 298 \text{ K} & [50] \\ Pt^{6^*}-CO & 2060 \text{ (linear)}, 2000, 1810-1840 \text{ (bridge)} & K-L \text{ zeolite} & 298 \text{ K} & [50] \\ Pt^{6^*}-CO & 2060 \text{ (linear)}, 2000, 1810-1840 \text{ (bridge)} & K-L \text{ zeolite} & 298 \text{ K} & [51] \\ Pt^{6^*}-CO & 2075-2090 \text{ (on large Pt particle)} & K-L \text{ zeolite} & 298 \text{ K} & [51] \\ Pt^0-CO & 2075-2090 \text{ (on large Pt particle)} & K-L \text{ zeolite} & 300 \text{ K} & [52] \\ 2066, 2051, 2031 & & & & \\ (Pt^0_2CO & 2008, 1998 & K-L \text{ zeolite} & 300 \text{ K} & [52] \\ Pt^0-CO & 1958-1976 & NaX \text{ zeolite} & 300 \text{ K} & [53] \\ Pt-CO & 2000 & Pt-cluster/Marc (Marc) (110) & 90 \text{ K} \text{ LHV} & [54] \\ \end{bmatrix}$	Pt ^{δ+} —CO	2100-2120	NaY Zeolite	298 K	[47]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$[\operatorname{Pt}_3(\operatorname{CO})_6]_n^{2-}, n = 3, 4$	2040 (linear)	Colloidal Pt	298 K	[48]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1840 (bridge)			
Pt ⁵⁺ -CO1700-1740 (bridge)Pt ⁵⁺ -CO2126K-L zeolite298 K[50] $(Pt)_7^0 - CO$ 2063K-L zeolite298 K[50] $(Pt)_5^0 - CO$ 2034K-L zeolite298 K[50] $Pt^0-CO, (Pt^0)_2CO$ 2060 (linear), 2000, 1810-1840 (bridge)K-L zeolite298 K[51] Pt^0-CO 2075-2090 (on large Pt particle)K-L zeolite298 K[51] Pt^0-CO 2075-2090 (on large Pt particle)K-L zeolite300 K[52] Pt^0-CO 1958-1976NaX zeolite300 K[53] $Pt-CO$ 2020Pt cutster/MgO (110)90 K[111]	$[Pt_3(CO)_6]_n^{2-}$ $(n = \sim 10, 6, 5, 4, 3, 2, 1)$	2100-2120 (linear)	Pt carbonyl		[49]
Pt^{δ^*} -CO 2126 K-L zeolite 298 K [50] $(Pt)_{7}^{0}$ - CO 2063 K-L zeolite 298 K [50] $(Pt)_{5}^{0}$ - CO 2034 K-L zeolite 298 K [50] Pt^{0} -CO, $(Pt^{0})_{2}CO$ 2060 (linear), 2000, 1810–1840 (bridge) K-L zeolite 298 K [51] Pt^{δ^*} -CO 2100–2120 K-L zeolite 298 K [51] Pt^{δ^*} -CO 2075–2090 (on large Pt particle) K-L zeolite 300 K [52] $2066, 2051, 2031$ 2008, 1998 K-L zeolite 300 K [52] Pt^{0} -CO 1958–1976 NaX zeolite 300 K [53] Pt_{-CO} 2020 Pt-cluster/(MgO (110)) 90 K [111]		1700–1740 (bridge)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt ^{δ+} —CO	2126	K-L zeolite	298 K	[50]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(Pt)_7^0 - CO$	2063	K-L zeolite	298 K	[50]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Pt)^0_{\varepsilon} - CO$	2034	K-L zeolite	298 K	[50]
Pt ⁵⁺ -CO 2100-2120 K-L zeolite 298 K [51] Pt ⁰ -CO 2075-2090 (on large Pt particle) K-L zeolite 300 K [52] 2066, 2051, 2031 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 1958-1976 NaX zeolite 300 K [53] Pt-CO 2020 Pt-cluster/MrQ (110) 90 K [54]	$Pt^{0}-CO$, $(Pt^{0})_{2}CO$	2060 (linear), 2000, 1810–1840 (bridge)	K-L zeolite	298 K	[51]
Pt ⁰ -CO 2075-2090 (on large Pt particle) K-L zeolite 300 K [52] 2066, 2051, 2031 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 1958-1976 NaX zeolite 300 K [53] Pt-CO 2020 Pt cluster/MgO (110) 90 K [54]	$Pt^{\delta+}-CO$	2100–2120	K-L zeolite	298 K	[51]
2066, 2051, 2031 (Pt ⁰) ₂ CO 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 1958-1976 NaX zeolite 300 K [53] Pt-CO 2020 Pt-cluster/MgO (110) 90 K [14]	Pt ⁰ –CO	2075–2090 (on large Pt particle)	K-L zeolite	300 K	[52]
(Pt ⁰) ₂ CO 2008, 1998 K-L zeolite 300 K [52] Pt ⁰ -CO 1958-1976 NaX zeolite 300 K [53] Pt-CO 2020 Pt-cluster/MgO (110) 90 K [14]		2066. 2051. 2031			1. 1
Pt ⁰ -CO 1958-1976 NaX zeolite 300 K [53] PtCO 2020 Ptcluster/MgO (110) 90 K UHV [54]	$(Pt^0)_2CO$	2008, 1998	K-L zeolite	300 K	[52]
PtCO 2020 Pt_cluster/MgO(110) 90 K UHV [54]	Pt ⁰ —CO	1958–1976	NaX zeolite	300 K	[53]
	Pt ₈ —CO	2020	Pt ₈ cluster/MgO (110)	90 K. UHV	[54]

(9)

Fig. 6. In situ DRIFT spectra for CO adsorption recorded during in adsorption-desorption equilibrium at 300 K in a mixture of 1.5 kPa of CO in N_2 background.

disappeared completely. Mass spectroscopy demonstrated that the corresponding species to the unique band at 2357 cm⁻¹ was CO_{2ads} with rising temperature to 523 K. Generally, the gas-phase CO_2 exhibits doublet peaks at 2361 and 2349 cm⁻¹, assigned to the asymmetric vibration of C=O and the same vibration with a rotation, respectively. The formation of the single peak at 2357 cm⁻¹ indicates that the formation of CO₂ occurs in the cages of zeolite *via* the following pathways (Eqs. (7)–(9)):

$$CO_{(g)} + Pt_n \rightarrow OC - Pt_n$$
 (7)

$$1/2O_{2(g)} + Pt_n \rightarrow O - Pt_n \tag{8}$$

$$\mathbf{O}-\mathbf{C}-\mathbf{P}\mathbf{t}_n + \mathbf{O}-\mathbf{P}\mathbf{t}_n \iff \mathbf{P}\mathbf{t}_n - \mathbf{O}\cdots\mathbf{C}-\mathbf{O}\cdots\mathbf{P}\mathbf{t}_n \rightarrow \mathbf{P}\mathbf{t}_n\cdots\mathbf{O}-\mathbf{C}-\mathbf{O}\cdots\mathbf{P}\mathbf{t}_n$$

Fig. 7. In situ DRIFT spectra for transient co-adsorption of CO and O_2 (CO= O_2 1.5 kPa, rest N_2) over the fresh reduced catalyst at 300 K.

whereas $CO_{(g)}$ and $O_{2(g)}$ represent CO and O_2 in the gas phase; Pt_n : small Pt clusters in the cages of zeolite; and OC—Pt_n and O—Pt_n: adsorbed CO and O over the Pt surface.

Normally, CO oxidation over supported Pt catalysts unlikely occurs at room temperature because oxygen adsorption/dissociation can easily be blocked by saturated coverage of CO_{ad} , so called "lowrate branch." In situ DRIFTS spectra (Figs. 6 and 7) hint that the back donation of electron from the Pt clusters into the antibonding

Fig. 8. In situ DRIFT spectra for CO adsorption at 423 K with varying CO partial pressure (mixture of CO/N_2) from 0.04 to 1.5 kPa (a) in a H₂-free atmosphere; (b) in a H₂-rich atmosphere, the experimental conditions are same as in the (a).

 π_g^* may weaken Pt–C–O bond, and the dissociation of the adsorbed O₂ can become easily [62]. In consequence, at room temperature, CO_{ad} can be reacted with O_{ad} (Eq. (3)) to form CO₂ molecules while its terminal oxygen atoms weakly bond to Pt clusters. CO₂ molecules should be constrained and only asymmetrically vibrate in the cage of zeolite. Therefore, it is understandable that only the single band at 2357 cm⁻¹ can be observed. However, this band did not appear in a CO₂ stream (1.0% CO₂/N₂). This fact suggests that the species may be an intermediate for CO oxidation over Pt clusters [45]. It should be emphasized here that for the first time we do observe the occurrence of CO oxidation over the Pt/NaY catalyst at room temperature. We speculate that the small Pt clusters encaged in NaY zeolite may play important role for the aimed reaction at elevated temperatures.

The similar reaction orders (Figs. 1–3), negative for CO and positive for O₂, were measured for both H₂-free and H₂-rich gases, but the value was slightly modified upon the temperature. These kinetic parameters are also analogy with those data reported for other Pt-based catalysts (Table 1), indicating that CO oxidation proceeds through the Langmuir–Hinshelwood mechanism in the low-rate branch. It means the Pt surfaces are fully covered with CO_{ad} while O₂ adsorption/dissociation is strongly depressed. Furthermore, comparatively, the reaction orders varied moderately in H₂-rich gas. In particular, the reaction order with respect to CO became ~0 in H₂-rich gas at 523 K; obviously, CO adsorption was affected by the presence of H₂ as identified by in situ DRIFT spectra (Figs. 8–10). We assume that the adsorption of CO is suppressed by co-adsorbed H_{ad} with increasing temperature, thus

Fig. 9. In situ DRIFT spectra for CO adsorption at 523 K, the experimental conditions are same as in the Fig. 8. (a) in a H_2 -free atmosphere; (b) in a H_2 -rich atmosphere.

allows more active sites to be accessible for oxygen. If it is the case, the reaction order became less dependent on p_{CO} . Therefore, the CO oxidation reaction in H₂-rich gas can be concisely described as follows: (i) O₂ and CO molecules are adsorbed on the Pt surface (Eqs. (10) and (11)), (ii) O₂ dissociates to form O_{ad}, which further reacts with the neighboring CO_{ad} to produce CO₂ (Eqs. (12) and (13), (iii) in the presence of H₂, O_{ad} reacts with H_{ad} to produce H₂O as well (Eq. (14)), and (iv) CO₂ and H₂O are desorbed from the surface (Eqs. (15) and (16)).

$$CO_{(g)} + Pt \rightarrow OC - Pt$$
 (10)

$$1/2O_{2(g)} + Pt \to 1/2O_{2(g)} - Pt \tag{11}$$

$$1/2O_{2(g)} - Pt \rightarrow O_{(g)} - Pt \tag{12}$$

$$O - C - Pt + O - Pt \rightarrow CO_2 - Pt$$
(13)
$$O - Pt + 2(H - Pt) \rightarrow H_2O - Pt$$
(14)

$$O = \Pi + 2(\Pi - \Pi) \rightarrow \Pi_2 O = \Pi$$

$$U_{2(g)} \to U_{2(g)} \to U_{2(g)}$$

$$\Pi_2 \mathbf{O}^{-} \mathbf{P} \mathbf{I} \to \Pi_2 \mathbf{O}_{(g)} + \mathbf{P} \mathbf{I} \tag{10}$$

DRIFT spectra (Fig. 10) also showed that the intensity of the linearly adsorbed CO on the Pt surface was much lower in H₂-rich gas than in H₂-free gas. H₂ could compete with CO on the Pt surface during reaction, this competition became strongly with increasing temperature. As a result, CO coverage decreased by ca. 20–50% (Fig. 10) in H₂-rich gas. In the meantime, a significant red-shift of the C—O stretch frequency from H₂-free (2077 cm⁻¹ at P_{CO} = 1.5 kPa to 2061 cm⁻¹ at P_{CO} = 0.04 kPa) to H₂-rich gas (2054 cm⁻¹ at P_{CO} = 1.5 kPa to 2049 cm⁻¹ at P_{CO} = 0.04 kPa) was also observed. The remarkable shift

Fig. 10. (a) The relative CO coverage $\theta_{CO,rel}$ vs. partial pressure of CO in the H₂-rich and H₂-free gases; (b) the shift of the vibrational frequency of the linearly adsorbed CO vs. partial pressure in the H₂-free and H₂-rich atmosphere. (\bullet) 423 K in N₂, (\blacksquare) 423 K in H₂; (\bigcirc) 523 K in N₂, (\square) 523 K in H₂. The results are based on the spectra in Figs. 8 and 9.

may result from not only a variation of CO coverage, but also a modification of interaction between CO_{ad} and H_{ad} on the Pt surface.

Furthermore, several methods, such as first principles calculations [5,6], exchange of hydrogen isotope [4,63], and infrared spectroscopy [4], have been used for exploring the H₂ promotional effects. Some H-containing species, such as O₂H^{*} [5,6], OH groups [4], and HCOO intermediates [64], were considered to account for the enhancement of CO oxidation. Yi et al. [63] suggested that the mechanism of CO oxidation would be different in H₂-rich gas over a Au/CeO₂ catalyst, and H-containing species produced by H₂ oxidation may promote CO oxidation. Using first principles calculations, Mavrikakis et al. [5,6] suggested a hydrogen-mediated (O₂H*) O₂ activation mechanism for CO oxidation on Pt and M@Pt (M = Ru, Rh, Ir, Pd, or Au) core-shell nanocatalysts. O_{ad} is proposed to be generated either by direct $O_2^* \rightarrow 2O^*$) or by H-mediated O_2 dissociation $(O_2^* + H^* \rightarrow O_2 H^* \rightarrow O^* + O H^*)$. As a result, the H-mediate O_2 activation is mainly responsible for the enhancement of CO oxidation. This may explain the $E_a = 54.0 \text{ kJ/mol}$ in the temperature range 423– 473 K in H₂-rich gas is lower than the $E_a = 82.5$ kJ/mol in H₂-free gas. Interestingly, in H₂-rich gas, the E_a increased to 90.0 kJ/mol when the temperature reaction increased continuously to 523 K, but the mechanism is still debatable.

5. Conclusions

The following conclusions can be derived for the PROX reaction over Pt/NaY zeolite catalysts:

1. In situ DRIFT spectra have demonstrated that CO oxidation over the Pt/NaY catalyst could occur at room temperature, and Pt clusters less than 1.2 nm might be responsible for this reaction. However, the role of the Pt clusters in the PROX of CO at higher temperatures is still unclear.

- 2. The reaction kinetics for CO oxidation in H₂-free gas, with negative reaction order in p_{CO} (α_{CO} between -1.07 (423 K) and -1.22 (523 K)) and positive order in p_{O_2} (α_{O_2} between 0.65 (423 K) and 0.78 (523 K)), are consistent with the Langmuir–Hinshelwood mechanism in the oxygen-limited low-rate branch.
- 3. In H₂-rich gas, the reaction order with respect to CO increases from -0.48 to ~ 0 with increasing temperature (423–523 K) and the O₂ reaction order decreases slightly, from 0.74 to 0.56, an indicative of a gradual transition from the oxygen-limited low-rate branch to the CO-limited high-rate branch. A change in mechanism with higher temperature is also indicated by the nonlinear behavior of the logarithmic reaction rates $r_{\rm CO}$ vs. 1/T, which can approximately be described by $E_{\rm a}$ of 54.0 ± 4.0 kJ/ mol at temperatures up to 473 K and of 90.0 ± 5.0 kJ/mol above that temperature.
- 4. Based on in situ DRIFTS measurements, CO interaction with the Pt/NaY zeolite catalyst is dominated by linearly adsorbed CO species adsorbed on metallic Pt^0 nanoparticles. A significant red-shift of CO stretch frequency was observed in the presence of H₂, which revealed that the interaction between Pt—CO bond and adsorption hydrogen occurred, possibly being responsible for the enhancement of CO oxidation.

Acknowledgments

The authors are grateful to the support from the Chinese Education Ministry 111 Project (B08021), the National Natural Science Foundation of China (21176071, 21106041), Shanghai PuJiang Talent Program (2010/10PJ1402500, 2011/11PJ1402400), Program of Science and Technology Commission of Shanghai Municipality (11JC1402700) Innovation Program of Shanghai Municipal Education Commission (11ZZ52, 11ZZ051), Shanghai Natural Science Foundation (11ZR1408400), Opening Project Program of State Key Laboratory of Chemical Engineering (SKL-ChE-10C05), and Fundamental Research Funds for the Central Universities.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcat.2011.12.012.

References

- [1] S. Kawatsu, J. Power Sources 71 (1998) 150.
- [2] S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254.
- [3] D.L. Trimm, Z.I. Önsan, Catal. Rev. 43 (2001) 31.
- [4] A. Fukuoka, J. Kimura, T. Oshio, Y. Sakamoto, M. Ichikawa, J. Am. Chem. Soc. 129 (2007) 10120.
- [5] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7 (2008) 333.
 [6] A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, J. Am. Chem. Soc. 132 (2010) 7418.
- [7] Y.-F. Han, M. Kahlich, M. Kinne, R.J. Behm, Appl. Catal. B 52 (2004) 123.
- [8] Y.-F. Han, M. Kahlich, M. Kinne, R.J. Behm, Appl. Catal. B 50 (2004) 209.
- [9] J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y.-F. Han, J. Am. Chem. Soc. 13 (2010) 10398.
- [10] J. Xu, P. Li, X. Song, Z. Qi, J. Yu, W. Yuan, Y.-F. Han, Ind. Eng. Chem. Res. 49 (2010) 4149.
- [11] K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.-F. Han, Catal. Today 131 (2008) 477.
- [12] Y.-F. Han, Z. Zhong, K. Ramesh, F. Chen, L. Chen, J. Phys. Chem. C 111 (2007) 3163.
- [13] Y.-F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, Phys. Chem. Chem. Phys. 4 (2002) 389.
- [14] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93.
- [15] M.M. Schubert, M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Power Sources 84 (1999) 175.
- [16] D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27.
- [17] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3 (2011) 634.

- [18] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, J. Catal. 237 (2006) 1.
- [19] M. Watanabe, H. Uchida, H. Igarashi, M. Suzuki, Chem. Lett. (1995) 21.
- [20] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, Appl. Catal. A 159 (1997) 159.
- [21] H. Igarashi, H. Uchida, M. Watanabe, Chem. Lett. (2000) 1262.
- [22] M. Watanabe, H. Uchida, K. Ohkubo, H. Igarashi, Appl. Catal. B 46 (2003) 595.
- [23] M. Kotobuki, A. Watanabe, H. Uchida, H. Yamashita, M. Watanabe, Appl. Catal. A 307 (2006) 275.
- [24] N. Maeda, T. Matsushima, H. Uchida, H. Yamashita, M. Watanabe, Appl. Catal. A 341 (2008) 93.
- [25] S. Huang, K. Hara, Y. Okubo, M. Yanagi, H. Nambu, A. Fukuoka, Appl. Catal. A 365 (2009) 268.
- [26] H. Kacirek, H. Lechert, J. Phys. Chem. 79 (1975) 1589.
- [27] N.I. Jaeger, A.L. Jourdan, G. Schulz-Ekloff, J. Chem. Soc. Faraday Trans. 87 (1991) 1251.
- [28] P.B. Weisz, Chem. Eng. Prog. Symp. Ser. 55 (1992) 29.
- [29] H. Muraki, S.-I. Matunaga, H. Shinjoh, M.S. Wainwright, D.L. Trimm, J. Chem. Technol. Biotechnol. 52 (1991) 415.
- [30] J. Sarkany, R.D. Gonzalez, Appl. Catal. 5 (1983) 85.
- [31] N.W. Cant, P.C. Hicks, B.S. Lennon, J. Catal. 54 (1978) 372.
- [32] Z. Paal, P. Tetenyi, Appl. Surf. Sci. 14 (1982-1983) 307.
- [33] M. Peuckert, H.P. Bonzel, Surf. Sci. 145 (1984) 239.
- [34] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain, C. King Jr (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995. ISBN:0-9648124-1-X.
- [35] S.H. Park, M.S. Tzou, W.M.H. Sachtler, Appl. Catal. 24 (1986) 85.
- [36] C. Klünker, M. Balden, S. Lehwald, W. Daum, Surf. Sci. 360 (1996) 104.
- [37] J. Yoshinobu, M. Kawai, Surf. Sci. 363 (1996) 105.
- [38] R.G. Greenler, K.D. Burch, K. Kretzschmar, R. Klauser, A.M. Bradshaw, B.E. Hayden, Surf. Sci. 152/153 (1985) 338.
- [39] D.M. Haaland, Surf. Sci. 185 (1987) 1.
- [40] R. Barth, R. Pitchai, R.L. Anderson, X.E. Verykios, J. Catal. 116 (1989) 61.
- [41] M. Primet, J. Catal. 88 (1984) 273.

- [42] G.-J. Li, T. Fujimoto, A. Fukuoka, M. Ichikawa, J. Chem. Soc., Chem. Commun. (1991) 1337.
- [43] F.-W. Schütze, F. Rößner, Z. Phys. Chem. 191 (1995) 271.
- [44] H. Bischoff, N.I. Jaeger, G. Schulz-Ekloff, L. Kubelkova, J. Mol. Catal. 80 (1993) 95.
- [45] D.A. Mantell, K. Kunimori, S.B. Ryali, G.L. Haller, J.B. Fenn, Surf. Sci. 172 (1986) 281.
- [46] V.B. Kazansky, V.Yu. Borovkov, N. Sokolova, N.I. Jaeger, G. Schulze-Ekloff, Catal. Lett. 23 (1994) 263.
- [47] K. Klier, Langmuir 4 (1988) 13.
- [48] J.S. Bradley, J.M. Millar, E.W. Hill, S. Behal, J. Catal. 129 (1991) 530.
- [49] G. Longoni, P. Chini, J. Am. Chem. Soc. 98 (1976) 7225.
- [50] M.J. Kappers, J.H. van der Maas, Catal. Lett. 10 (1991) 365
- [51] C. Besoukhanova, J. Guidot, D. Barthomeuf, M. Breysse, J.R. Bernard, J. Chem. Soc., Faraday Trans. I 77 (1981) 1595.
- [52] L.M. Kustov, D. Ostgard, W.M.H. Sachtler, Catal. Lett. 9 (1991) 121.
- [53] A.I. Serykh, O.P. Tkachenko, V.Y. Borovkov, V.B. Kazansky, M. Beneke, N.I. Jaeger, G. Schulz-Ekloff, Phys. Chem. Chem. Phys. 2 (2000) 5647.
- [54] U. Heiz, A. Sanchez, S. Abbet, W.-D. Schneider, Chem. Phys. 262 (2000) 189.
- [55] U. Heiz, A. Sanchez, S. Abbet, W.-D. Schneider, J. Am. Chem. Soc. 121 (1999) 3214.
- [56] Y. Shi, K.M. Ervin, J. Chem. Phys. 108 (1998) 1757.
- [57] H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem. Int. Ed. 50 (2011) 10064.
- [58] B.C. Gates, Chem. Rev. 95 (1995) 511.
- [59] J. de Graat, A.J. van Dillen, K.P. de Jong, D.C. koningsberger, J. Catal. 203 (2001) 307.
- [60] A.L. Ankudinov, J.J. Rehr, J.J. Low, S.R. Bare, J. Chem. Phys. 116 (2002) 1911.
- [61] M.J. Lundwall, S.M. McClure, D.W. Goodman, J. Phys. Chem. C 114 (2010) 7904.
- [62] J. Wintterlin, S. Völkening, T.V.W. Janssens, T. Zambelli, G. Ertl, Science 278 (1997) 1931.
- [63] G. Yi, H. Yang, B. Li, H. Lin, K. Tanaka, Y. Yuan, Catal. Today 157 (2010) 83.
- [64] K. Tanaka, M. Shou, H. He, X. Shi, X. Zhang, J. Phys. Chem. C 113 (2009) 12427.